

SECTION1 - PROJECT GENERAL INFO

Project Acronym:		HECATE		
Project Full Title:		Hybrid ElectriC regional Aircraft distribution TEchnologies		
Total	Project Cost (-€)	45.159.602,50 €		
	EC Funding (€):	34.210.348,00 €		
Starting date	01/2023	End date 12/2025		
Project OFFICIAL LOGO		HECATE		
Project website/ social Media Channel		https://hecate-project.eu/		
Project details from EU Cordis (link):				
Hybrid ElectriC regional Aircraft distribution TEchnologies HECATE Project Fact sheet HORIZON CORDIS				
<u>European Commission (europa.eu)</u>				

SECTION2 - CONSORTIUM DETAILS

CONSORTIUM INFO				
Beneficiary Name	Company Type (SME, R&D, IND, UNI)	Country	Main task in the project	
1-COLLINS AEROSPACE IRELAND, LIMITED	IND	IE	Coordinator. Design of power electronics, electrical distribution and architectures, digitalization, and verification & validation	
2-SAFRAN ELECTRICAL & POWER	IND	FR	Design, manufacturing and integration of component and system for "more electrical" aircraft including global electrical system testing	
3-LEONARDO - SOCIETA PER AZIONI	IND	ІТ	Aircraft manufacturer: specify, design, develop, test and certify HER platform	
4-AIRBUS DEFENCE AND SPACE SA	IND	ES	Aircraft manufacturer: specify, design, develop, test, and certify HER platform	
5-IRT ANTOINE DE SAINT EXUPERY	RTO	FR	Modelling: Weight reduction, thermal and electromagnetic interferences/ compatibility (EMC/EMI) modelling of electrical wiring interconnection systems (EWIS)	
6-HS ELEKTRONIK SYSTEME GMBH	IND	DE	Design and manufacturing of electrical power distribution architecture systems, packaging through additive manufacturing, Solid-State Power Controller (SSPC) and Digital Twin (DT) & Predictive Health Monitoring (PHM) related technologies	
7-SAFRAN SA	IND	FR	Design, manufacturing and integration of component and system for "more electrical" aircraft including global electrical system testing	
8-SAFRAN AEROSYSTEMS	IND	FR	Design, manufacturing and integration of component and system for "more electrical" aircraft including global electrical system testing	
9-ADVANCED LABORATORY ON EMBEDDED SYSTEMS SRL	IND	ІТ	Digitalization of power electronics and electrical distribution modules	
10-STICHTING KONINKLIJK NEDERLANDS LUCHT - EN RUIMTEVAARTCENTRUM	RTO	NL	Thermal and electromagnetic interference/ compatibility (EMI/EMC) modelling of electrical wiring interconnection systems (EWIS)	
11-FOKKER ELMO BV	IND	NL	Modelling, design and manufacturing of power electrical wiring interconnection systems (EWIS)	
12-UNIVERSIDAD POLITECNICA DE MADRID	UNI	ES	Power conversion and optimized magnetic components	
13-UNIVERSIDAD CARLOS III DE MADRID	UNI	ES	Ionization phenomena, instrumentation, and high voltage systems	

		Eventing on divert surrent micro mide, mudictive
	DK	Expertise on direct current microgrids, predictive
UNI	DK	health monitoring and digital twins of power electronics
UNI	PL	Diagnostics and conditions monitoring, electrical
		machines, and drives
UNI	ES	Computational electromagnetics, numerical
		methods, and finite difference time domain methods
IND	РТ	Partitioning operating system avionics integrated
		architecture (IMA) and distributed integrated
		modular avionics (DIMA), safety critical software
		development
		Electrical conversion for many segments of aviation;
IND	FR	inverter, power module, integrated EMI filter, robust
		communication
	FR	Electric power management onboard aircraft,
		running on real-time control board targets, involved
		in the design, programming, and testing of a global
		supervisory unit (GSU)
		Electric power management onboard aircraft,
SME	IT	running on real-time control board targets, involved
SIVIE		in the design, programming, and testing of a global
		supervisory unit (GSU)
		Design and development of aerospace and defence
IND	ES	systems, bringing expertise on power distribution
		and monitoring skills
IND	DE	Global equipment supplier for avionics and cabin
		system providing expertise on IMA and tools,
		secondary power distribution, solid-state power
		controller (SSPC) control
		Electrical energy storage and conversion: model-
DTO	•	based design of battery (incl. management and
RIU	AI	diagnostics), software integration of battery pack and
		fuel cell system
		Electrical energy storage and conversion: model-
	ІТ	based design of fuel cell systems (incl. fault and
UNI		degradation aware control); co-design of fuel cell
		system and battery pack sizes (i.e., in terms of
		nominal power and additional mass)
UNI	55	Sustainability assessment, additive manufacturing,
	DE	topology, thermal and structure simulation
	ES	Design, certification, and manufacturing of
CN 4 5		electromechanical and electronics aero equipment
SL SME		for flight control, electrical distribution, refuelling
		sensing and fuel monitoring
		Energy conversion solutions for on-board
RTO	ES	
	UNI IND IND SME IND IND RTO UNI UNI SME	UNIPLUNIESINDPTINDFRINDFRINDFRINDESINDESINDATUNIDEUNIDESMEITUNIDESMEESSMEESSMEES

			development for automotive applications (power converters)		
27-FRAUNHOFER GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG EV	RTO	DE	Technology demonstration of power electronic for harsh environment based on ceramics embedding and virtual lifetime testing of power electronic for avionic applications		
28-UNIVERSITA DEGLI STUDI DELLA CAMPANIA LUIGI VANVITELLI	UNI	ІТ	Automatic and supervisory control and power electronics, More Electric Aircraft (MEA)		
29-TECHNISCHE UNIVERSITAET ILMENAU	UNI	DE	High voltage technology and their applications for the optimization of the components of electrical power engineering (electric arc simulation, arc physics, switchgear research)		
30-DRAKA FILECA SAS	SME	FR	Development and production of wires and cables for aeronautics/aerospace applications		
31-SAFRAN ELECTRICAL COMPONENTS	IND	FR	Research, development and manufacturing of aircraft components, and landing gear harnesses		
32-POLITECHNIKA LODZKA	UNI	PL	Life Cycle Assessment (LCA) and waste scenario including recycling – "closed-loop" recycling		
33-UNIVERSITY OF NOTTINGHAM ITALY SOCIETA' CONSORTILE A RESPONSABILITA' LIMITATA	RTO	IT	Electrical systems for aerospace applications		
34-GOODRICH CONTROL SYSTEMS PRIVATE UNLIMITED COMPANY	IND	UK	Research, design and modelling of power electronics, electrical distribution and architectures, digitalization, and verification & validation		
35-AEROSPACEHV LTD	SME	υк	Specialist support for the design, test and maintenance of high voltage equipment used in the aerospace and automotive sectors		
36-THE UNIVERSITY OF NOTTINGHAM	UNI	UK	Design and manufacturing of Power electronics, and support definition electrical systems for aerospace applications and electrical power distribution architectures.		
Project Primary Coordinator Con		Ignacio Castro Álvarez			
Project Primary Coordinator Contact E-mail			ignacio.castro@collins.com		
Project Primary Coordinator Contact Company			Collins Aerospace Ireland		

SECTION 3 – AMBITION, INNOVATION, ROADMAP, IMPACT

AMBITION, CONCEPT & APPROACH, CHALLENGES

HECATE is a Clean Aviation project dedicated to the definition of next generation electrical distribution for hybrid electric aircraft under the regional pillar. HECATE has six main objectives:

- 01. Development of a holistically optimized electrical architecture
- O2. Technology brick development to TRL5
- O3. Mitigation of HV phenomena and EMI
- 04. Development of digital twins
- 05. Certification of the electrical distribution
- 06. Technology roadmap toward near- and long-term electrical architectures

These objectives contribute to the development of technologies that enable the path toward long-term roadmaps such as that of Advisory Council for Aeronautics Research in Europe (ACARE). Flightpath 2050 sets specific goals like a 75% reduction of CO2 emissions per passenger kilometre and 90% reduction of Nox.

To meet these ambitious targets for commercial aerospace, in both terms of fuel efficiency and supply demand, a paradigm change is needed. This will be done by shifting towards electric/hybrid-electric propulsion technologies that will significantly reduce the fuel burn. As part of this conjoined effort, HECATE will define, design, and provide with the required technology enablers related to the electrical distribution by means of technology bricks that will act as the building blocks of the architecture. The HECATE project will demonstrate a >500 kW architecture in a copper bird test facility in 2025.

This technology development will enable higher level impact that can be grouped in two major pillars:

- Industrial competitiveness and economy impacts:
 - Changes to the aviation ecosystem. (e.g., organisations moving to another supply chain tier position, newcomers embedded into the ecosystem, new and more jobs).
 - Changes to the power network work force in terms of skill set and education programmes.
 - Increasing the innovation capacity of project partners and wider community.
 - Stakeholder engagement from Original Equipment Manufacturers to wider supply chain.
- Environmental and societal impacts.
 - Fostering a sector-wide coherent response strategy to comply with EU policies targeting aviation's goal of net-zero carbon emissions by 2050.

HECATE mobilizes a large consortium of 36 partners spread over 12 countries and unites EU's industry leaders on power distribution systems working together with key SMRs, RTOs and universities ensuring the knowledge gained in EU is exploited and embedded in future research and education programs within and for the EU. To ensure the path toward exploitation HECATE is in contact with other CA and HE projects and with EASA to ensure a path toward certification for technologies developed within HECATE.

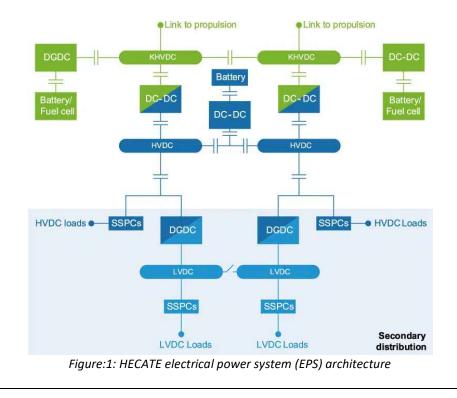
Please fill the table below to report 5-6 "top"(+3 achieved during 2023) important technical" milestones and technologies for COMM purposes

KEY PROJECT MILESTONES					
Milestones NAME	TIME	Description	Is there any Hardward /mock-up expected that can be displayed in major events ?		
M1- "Power Converter Specifications Completed"	06.2023	Achieved - Power Converter specifications and requirements successfully defined, completed and documented, enabling the progress toward product design and development.	NO		
M2- "Impact Monitoring Dashboard"	06.2023	Achieved - A comprehensive dashboard, accounting for all Key technological Performance Indicators towards programme aims is created and successfully updated.	NO		
M3 – "Test Bench PDR"	12.2023	Achieved- Preliminary Design review completed for the specific test bench, where the full electrical architecture will be integrated, accounting for the Interface Control Document of all individual equipment composing the global system.	NO		
M4 – "Secondary distribution specifications"	02.2024	Maturation of the Secondary Distribution technology brick, to provide power to the rest of the loads of the aircraft, to a TRL4 level.	NO		
M5 – "Primary distribution critical design review completed"	10.2024	Maturation of the Primary Distribution technology brick, to supply power to the electrical propulsion system, to a TRL4 level	NO		
M6 – "Power Converters critical design review completed"	12.2024	Maturation of the Power Conversion technology brick, to ensure power is delivered at the required voltage levels within electrical distribution and to the loads, to a TRL4 level.	NO		
M7 – "Electrical Sub-Systems Integrated"	\sim 1971175 reporting certitying integration and compliance as per		NO		
M8 – "Electrical Architecture Digital Twin validated"	12.2025	Electrical architecture Digital Twin (a digital representation of a physical system that provides real- time evaluation of its physical) fully developed and validated against the results coming from the test report.	NO		
M9 – "Electrical Architecture tested"	12.2025	Final testing on a representative test bench (COPPER bird), showcasing a fully integrated electrical distribution system capable of addressing the needs of a Hybrid Electric Regional aircraft.	NO		

TRL ROADMAP of KEY TECHNOLOGIES						
Integrated Systems and Sub- systems level	2023	2024	2025	2026		
Primary Distribution	TRL3	TRL4	TRL5	Out of HECATE timeline		
Secondary Distribution	TRL3	TRL4	TRL5	Out of HECATE timeline		
Electrical Architecture fully integrated	NA- Sub-systems under development	NA- Sub-systems under development	TRL5	Out of HECATE timeline		

CONTRIB	UTION T	O HIGH LEVEL OBJECT	TIVES OF	THE PROGRAM	
Aircraft concepts	Please identify the thrust and the A/C concept to which your project contributes to HER - USE CASE A; HER - USE CASE B SMR – xxx				
High level objective at system level – (HERA and ACAP at A/C level)	Yes/No?	Quantification at system level (%) (HERA and ACAP at A/C level)	Metrics	Reference Technology/ Architecture Or Reference Aircraft	
Fuel Reduction	\boxtimes	To be studied at Aircraft levelTo be studied at Aircraft level	*	Electrical architecture.	
Energy efficiency	\boxtimes	To be studied at Aircraft levelTo be studied at Aircraft level	*	Electrical architecture.	
CO ₂ Reduction	\boxtimes	To be studied at Aircraft levelTo be studied at Aircraft level	*	Electrical architecture.	
NO _x Reduction	\boxtimes	To be studied at Aircraft levelTo be studied at Aircraft level	*	Electrical architecture.	
Noise Reduction		To be studied at Aircraft levelTo be studied at Aircraft level			
Others - : (Specify Click here to enter text.)		To be studied at Aircraft levelTo be studied at Aircraft level			

*Hecate technologies will act as an enabler to the rest of electric propulsion technologies, so HECATE impact towards environmental KPIs is studied with other CA programs.



SECTION 4 - SUMMARY OF MAIN RESULTS

MAIN RESULTS

HECATE has finalized the top level requirement definition, and it is currently in the design phase of the technology having some of the first PDRs already occurring. The setting and requirement phase defines the means and tools for efficient collaboration between partners and the baseline requirements that will define the electrical architecture and the design of the technology bricks. During this first year, HECATE has achieved the next key milestones:

- 1. The definition of the top-level requirements.
- 2. The definition of the electrical distribution architecture,
- 3. The definition of the requirements for the design of primary distribution, power converters and power management. With a preliminary design review completed for Primary Distribution, and Power Management and Control System.
- 4. The definition of a validation and verification strategy towards the final validation in a test bench (copper bird) at the end of 2025, with a successful Preliminary Design Review completed for said test bench.
- 5. An Impact Monitoring process has been defined where certain KPIs and a technology roadmap, towards project objectives and Clean Aviation program aims, is outlined.
- 6. The definition of interactions with other Clean Aviation programs aiming towards a common platform under the regional pillar.
- 7. The implementation of tools, mechanisms, and rules for the collaboration of all partners. With both a legal framework defined, and an operational process outlined.

